Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins.
نویسندگان
چکیده
Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm.
منابع مشابه
Genetic analysis of amino acid accumulation in opaque-2 maize endosperm.
The opaque-2 mutation in maize (Zea mays) is associated with an increased level of free amino acids (FAA) in the mature endosperm. In particular, there is a high concentration of lysine, the most limiting essential amino acid. To investigate the basis for the high-FAA phenotype of opaque-2 maize, we characterized amino acid accumulation during endosperm development of several wild-type and opaq...
متن کاملOpaque7 encodes an acyl-activating enzyme-like protein that affects storage protein synthesis in maize endosperm.
In maize, a series of seed mutants with starchy endosperm could increase the lysine content by decreased amount of zeins, the main storage proteins in endosperm. Cloning and characterization of these mutants could reveal regulatory mechanisms for zeins accumulation in maize endosperm. Opaque7 (o7) is a classic maize starchy endosperm mutant with large effects on zeins accumulation and high lysi...
متن کاملLysine-Ketoglutarate Reductase in Normal and Opaque-2 Maize Endosperms'
Lysine-ketoglutarate reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses L-lysine and a-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and thereafter decreasing as t...
متن کاملIntrogression of opaque2 into Waxy Maize Causes Extensive Biochemical and Proteomic Changes in Endosperm
Waxy maize is prevalently grown in China and other countries due to the excellent characters and economic value. However, its low content of lysine can't meet the nutritional requirements of humans and livestock. In the present study, we introgressed the opaque2 (o2) allele into waxy maize line Zhao OP-6/O2O2 by using marker-assisted selection (MAS) technique and successfully improved the lysin...
متن کاملPartial purification and characterization of lysine-ketoglutarate reductase in normal and opaque-2 maize endosperms.
Lysine-ketoglutarate reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses l-lysine and alpha-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and there-after decreasing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 67 5 شماره
صفحات -
تاریخ انتشار 2016